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ABSTRACT

An aeromagnetic survey in the Katmai National Monument was carried

out by the Geophysical Institute, University of Alaska, in the summers

of 1970-1971. Geologic and magnetic studies of the Katmai area have fur-

ther demonstrated the close relationship between the Katmai Caldera, No-

varupta plug, and the pyroclastic flows in the Valley of Ten Thousand

Smokes.

The magnetic fields observed appear to be associated with the

thickness of the pyroclastic flow and the different rock units within it

for lower flight levels, and also the contrast between the valley fill

and the rock units at the Valley margins.

Consistent magnetic anomalies are associated with the larger fuma-

role lines, which were presumably sites of large scale activity, while

the smaller fumaroles are not usually seen in the aeromagnetic map. A

possible correlation between low positive anomalies and nuee ardente

deposits was revealed by the aeromagnetic survey, but was not strong.

Novarupta plug is represented by a large positive anomaly which is

thought to represent both the lava dome and concealed intrusive material

beneath it. In contrast, the rim around the plug has negative anomalies

similar to those associated with Naknek Sediments.

Around Novarupta, radiating lines indicate local fault zones, which

in turn have controlled the fumarolic activity. The flank terraces also

seem to be associated with local faulting.

Volcanic trends in the Alaska Peninsula are thought to be controlled

by the tectonics.of the Aleutian island arc system. The magnetic signa-



tures of this tectonic trend are not strong, but some features can be

recognized from the distribution of positive anomalies at the 1220 m

flight level.

A ground survey was also carried out in several parts of the Valley

with a view to detailed delineation of the magnetic signatures of the

pyroclastic flow, as an aid to interpreting the aeromagnetic date.
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CHAPTER I

INTRODUCTION

Katmai National Monument, located on the Alaska Peninsula, is part

of the active Circum Pacific Volcanic and Earthquake zone. It is also

part of the island arc system that extends for more than 3000 km from

Kamchatka Peninsula to the Alaska Range. Numerous volcanic and non-volca-

nic peaks are grouped around Mt. Katmai. The higher peaks, up to about

2140 m are volcanic summits superimposed on the Aleutian range, which it-

self reaches 1200 m 1530 m and is covered by recent glaciers. The vol-

canism of the Aleutian chain is typical of the Pacific Rim "Andesite

line". The volcanics range in age from Tertiary to recent, and consist

mainly of basalts, andesites, and rhyolites.

There are mostly andesites and dacites in the Katmai area, which

have formed typical stratovolcanoes and lava domes, and, in the case of

Mt. Katmai itself, a caldera. The 1912 Mt. Katmai caldera-forming erup-

tion was one of the largest events in historical times, and although many

scientists have investigated the.origin and nature of the activity, there

are still many unsolved problems (Fenner 1922, Griggs 1912, Williams 1954,

Keller and Reiser 1959, and Wilcox 1959).

Recently, several petrological, tectonic, and geophysical studies

have been made. Forbes et al. (1968), Ray (1967), Kienle (1967), and

Burk (1965).

Work is currently being undertaken in the Mt. Katmai area by members

of the Geophysical Institute, University of Alaska. The work described in

this dissertation was part of this project, undertaken in the summer of

1970. The main objects of the overall study were to study: 1) Current

1
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volcanic activity; 2) The general geology of the Mt. Katmai area, in-

cluding reconstruction of the eruptive events of 1912, their origin, and

the character of the pyroclastic flow in the Valley of Ten Thousand

Smokes; 3) The thickness of the pyroclastic flow in the Valley of Ten

Thousand Smokes using seismic, gravity and magnetic techniques; 4) The

geomagnetic field anomalies associated with the volcanic activity; 5) The

geomorphology and glacial features of the area.

This thesis is concerned principally with the aeromagnetic data.

From the magnetic measurements, iso-intensity maps and anomally maps have

been compiled.

The base camp was located on the flank of Baked Mountain, which is

situated about 7 miles northwest of Mt. Katmai, and about 30 miles from

Brooks Camp on Naknek Lake (Fig. 2). It was noted during the course of

the investigation that the Alaska Peninsula is a storm lashed area with

very unpredictable weather; the wind at times exceeding 50 m/sec. The

weather is characteristically foggy, cloudy, and windy, the violence of

wind being sufficient to deposit eolian sediments in the lower valley.

Although the Alaska Peninsula is narrow, the Katmai National Monument

area is a transition zone between the maritime climate of the Aleutian

region and semi-continental climate of the terrestrial areas of Alaska.

Geology of Mt. Katmai Area

The Alaska Peninsula consists in part of thick sequences of volcanic

and marine geo-synclinal sediments of Permain to Early Jurrassic age,

which have been intruded by Early Jurassic granitic plutons. Minor defor-

3
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mation and uplift occurred throughout Cretaceous, and Tertiary times,

and has continued up to the present. Most of the prominent structural

features of the Alaska Peninsula were formed by post Miocene deformation

(Burk 1965).

It is said that the island arc volcanism began in the late Tertiary

(Kagami et al 1965, Von Huene and Shor 1969) and that the main crustal

movement occurred in late Pliocene times.

On January 6, 1912, the peak of Mt. Katmai disappeared accompanied

by violent activity in the area, including the eruption of material from

vents and/or fissures during a comparatively short time (Griggs 1920). The

erupted material consisted of pyroclastics in fragmental condition as ash,

lapilli, and bombs, and also Nuee ardentes. Following these events, the

National Geographic Society and U.S.G.S. sponsored a comprehensive survey

of the area (Fenner 1922, Griggs 1923).

Before the 1912 eruption, the only geological description near Katmai

was that reported by J. E. Spurr in 1900. He traversed a deep valley

(assumed to be the ancestral Valley of Ten Thousand Smokes) floored with

stream and glacial debris, and says that its walls consisted of marine

sedimentary rocks containing Jurrassic fossils. These rocks in the Alaska

Peninsula are thought to have been lifted and intruded by granitic plu-

tonic rocks before the Cenozoic volcanoes began to erupt.

Generally the volcanic history of the Alaska Peninsula has been

characterized by a uniformly developing series, such as strato volcano

erosion and/or caldera formation, followed by formation of a new central

cone. In the Katmai case, the building of a new central cone has not yet

occurred, perhaps because Novarupta and Trident are being formed instead.
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The most noteable activity today is associated with Mts. Griggs,

Martin, Mageik, Trident, and Novarupta, and there is no sign of current

activity in the Katmai caldera.

Mt. Griggs, Mt. Mageik, and Mt. Martin are stratovolcanoes and in-

clude andesitic and dacitic lavas of Quaternary age. The lavas are of

different colors and have different mineral compositions, but are very

similar in chemical composition. This probably indicates that they were

derived from the same sources. In considering Novarupta, Williams (1954)

said that "the intimately mingled rhyolitic and andesitic ejecta of which

the avalanche deposit consists were formed, not by assimilation of old

andesitic rocks in fresh rhyolitic magma, but by simultaneous discharge

of rhyolitic and andesitic magmas from the same or closely adjacent fis-

sures. The lithological fragments of andesite and sedimentary rocks in-

cluded among the ejecta, and the banded lava in the dome of Novarupta

only showed a trivial amount of assimilation". On this basis, it would

seem that there are two kinds of magma which were erupted together. Berg

and Kubota (1967) show evidence that supports two magma chambers at dif-

ferent depths in the vicinity of Baked Mountain base camp.

In contrast to this, Fenner (1925) suggested that before and during

the Katmai eruptions, a "lake" of rhyolitic lava dissolved approximately

two cubic miles of the andesitic and sedimentary rocks of the flanks of

Katmai before being erupted as a hybrid pumice. This concept was based on

the idea of volcanic cycles (Bowen 1928) that change from basic to acidic.

At or about the same time as the glowing avalanches were discharged,

presumably from Novarupta and adjacent fissures at the head of the Valley

of Ten Thousand Smokes, the entire top of Mt. Katmai volcano collapsed,

6



leaving in place of its pointed peak an oval crater almost 5.0 km long

and 3.2 km wide. It seems probable that a connection between Katmai and

Novarupta existed at some depth, perhaps in the form of lava conduits.

During the final phase of the eruption, rhyolitic lava issued sluggishly

to build a dome within the Novarupta Crater. According to Williams, the

main eruption of Novarupta certainly occurred after the collapse of Mt.

Katmai.

Williams classifies volcanic calderas as of Krakatoan type, when

the caldera is associated with voluminous explosive eruptions of siliceous

magmas, and of Katmai type when the collapse results from drainage of the

central conduit of a volcano and perhaps also of some of the underlying

reservoir by discharge of magma through adjacent conduits. He claims that

"the top of Mt. Katmai collapsed in 1912, when its central conduit was

drained by eruption of ash and pumice flows from vents in the adjacent

Valley of Ten Thousand Smokes".

Naknek Formation

The name Naknek Formation is applied to a sequence of rocks of late

Jurrassic age, locally having a basal conglomerate member. This basal

member is identified by Mather (1963) as the Chisik conglomerate, based

on the lithologic similarities of the conglomerate in Mt. Katmai area

to the one described by Martin and Katz (1912) in the Iliamna Lake region.

The upper. part of the Naknek formation in the Katmai area consists of

marine sandstone, silts, shales, and occasional lenticular fossil beds.

Rocks of the Naknek formation are wide spread on the Alaska Peninsula as

well as in other areas. The upper parts of Naknek Formation are Kinnmerid-

gian to basal Portlandian in age (See Fig. 3).

7
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Tertiary Deposits

Tertiary coal bearing rocks are present on the Kenai Peninsula, and

east of Mt. Katmai areas. They locally interfinger with volcanic rocks

which may be of Eocene age (Keller and Kieser 1959). The formation con-

sists of abundant nonmarine conglomerates, sandstones, silts and coal

bearing mudstone. These appear to be lagoonal or swampy sediments and

were probably deposited in Eocene times. These coal bearing formations

may be comparable with the Kenai Formation which has been disturbed by

Miocene to recent movement. However, directly comparable rocks could not

be found in the survey area.

Volcanism began at least as early as Eocene time and continued through

the Tertiary and Quaternary period to the present. Tectonic activity along

parts of the circum Pacific belt has continued at least since Mesozoic

times, but the main movement may have occurred between Pliocene and

Pleistocene times. There are, however, no signs of a marked change in

relative motions similar to those that produced the predominately Miocene

volcanism and "green tuff movements" of Japan (Minato, Gorai and Funabashi

1965).

Surficial deposits in the Katmai area are predominately alluvial

gravel and glacial moraine, these deposits produced the periglacial and

proglacial areas in late glacial ages. Iluk Arm Lake and Brooks Lake show

excellent examples of moraine deposits.

Very recent deposits are dominated by the emplacement of the thick

tuff deposits of the eruption of Mt. Novarupta. This has been discussed

in detail by Griggs (1922), Fenner (1923)', and Forbes (1970).

9



Tectonic and Volcanic Setting

The eastern Aleutian Trench lies parallel to the Alaska Peninsula

and seems to disappear beneath the Alaskan Mainland.

The Eastern Aleutians have an arcuate shape of % 1380 km radius,

centered off Nome; the trench is an asymmetric V-shaped and generally

broad depression. It has half graben fault structure on the continental

slope side, and is filled with flat-lying undeformed sediment (VonHuene

and Shor 1969). The Alaska Peninsula has three main echelon fault blocks

which are bounded on one side by a steep reverse fault; these have formed

the complex faulted anticlines of Pliocene age (Burk 1965) (Fig. 4).

Burk (1965) in his description of the geology of Alaska Peninsula

and the adjacent continental shelf, noted that the present eastern Aleu-

tian Trench could not be older than early Tertiary and possibly much

younger.

Hamilton (1966) has estimated the age of the trench as Cretaceous

to Miocene, favoring Eocene. However, the eastern Aleutian trench is not

very deep, so that it appears more as a trough than a trench as opposed

to the western Aleutian island arc which has a well-developed deep trench.

The Alaska Peninsula volcanism and associated trench have only

shallow earthquakes indicating a low angle Benioff Zone and also thin

undeformed sediments in the trench. This may indicate a young age.

The distance between the trench and volcanic front is about 150 m

200 km, the depth of the earthquake zone beneath the volcano line is 80

km so that the angle of the earthquake zone can be calculated to be about

20 degrees.

Kanomori (1970) maintains that because of the relatively shallow

10
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depth, the temperature and pressure are not enough for large scale melt-

ing of magma, hence large stresses can be built up resulting in larger

earthquakes in the area.

The origin of andesites from calc-alkali rock series and their bear-

ing on island arc structures was discussed by Kuno (1963). He discusses

the possibility of producing the successive magmas by fractionation of a

basaltic parent magma. For example, northeast Japan may be divided into

zones of tholeiite, high alumina basalt and alkali olivine basalt arranged

in order from the Pacific side of the islands toward the continental side.

In general, it is found that the pigeonitic rock series, the high alumina

basalt series and alkali rock series occur in their respective zones.

Using Kuno's classification of magma, the Aleutian volcanic rocks

were generated from a tholeiitic magma. However, the rocks belong to high

alumina basalt (Ray 1967), (Sugimura 1967), so parent magma would

have to have high alumina and alkali basalt affinities (Ray 1967). Such

melts could be derived from the partial fusion of a basaltic layer at

the base of the crust. Kuno pointed out that the type of volcanic rock

correlates with the depth of the seismic zone. If magma is generated at

the seismic zone, tholeiitic basaltic magma would be generated at 130 m

160 km, high alumina basalt at 160 m 250 km, and alkali basalt magma at

more than 250 km.

On the other hand, Sugimura (1963) proposed a classification of is-

land arc rock series using an index which is computed according to the

formula:

0 = Si02 - 47 (Na 2 0 + K2 0) / Al203

where SiO2 is in weight per cent and the other oxides in molecular propor-

tion. The value 47 used comes from determination of the values "a" and "b"

12
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for the relation SiO2 = a + b (Na20 + K20) / Al203 Studies in Japanese

Islands show that the isobaths of the seismic plane (mantle earthquakes)

are parallel to the volcanic front and also to the boundary lines of

petrologic provinces. This relation is also found in the Aleutian arc,

though the petrologic boundary is not as clear (Barazangi and Dorman 1969).

The volumne of the volcanic material decreases with the increase in

distance from the front (Sugimara and Uyeda 1968). It is found that the

0 - index at the volcanic front is the highest for any part of a given

island arc (Fig. 5). For the Aleutian arc it seems to be generally con-

stant as follows:

TABLE I

N. E. Umnak 36.9
S. W. Umnak 39.0
Adak 35.3
Makushin 37.5
Eider Point 36.1
Kiska 39.1
Little Sitkin 38.3
Trident* 36.88 .

(after Sugimura),* calculated from (Forbes et al 1967)

The volcanic front of an island arc may be used as one of the char-

acteristics of the primary magma for the island arc.

Gravity Data

A local negative gravity anomaly has been mapped in the Katmai area

by Kienle (1968); -20 v -35 mgal anomaly is centered on the flank of Mt.

Trident (Fig. 43). Kienle (1969) interpreted this anomaly as due to a

very shallow mass deficiency near Mt. Trident, the maximum depth to its

center.being about 3 km. The: density contrast between andesitic magmas

and the host rock at Mt. Trident are such that the mass deficiency cannot

be due to an andesitic magma chamber. It is interpreted as a volume of

14



host rock heavily impregnated with low density vesicular andesites and

therefore the gravimetrically detected mass deficiency under Mt. Tri-

dent may be related to the chambers discovered seismically that underlie

the area at about 10 km depth (Kubota and Berg 1967). Kubota and Berg

(1967) also claim a direct relationship between Mt. Katmai and Mt. Nova-

rupta, however, the proposed chambers have diameters of no more than 5

km and a 10 km depth.

15
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CHAPTER II

METHODS AND TECHNIQUES

Equipment

The proton precession magnetometer measures only the total magnetic

intensity. It was first used to measure the Earth's field by Packard and

Varian (1954). The method depends on the fact that in the presence of a

magnetic field the spin axes of a small proportion of the protons in li-

quids such as water, become aligned in the direction of field; if the

direction of the field changes, the protons will precess about the new

field direction with a frequency given by 2Rf = r F where r is the gyro-
p P

magnetic ratio of the proton, and F is the field strength in gauss. The

value of r adopted by the IUGG is r = (2.67513 ± 0.00002) x 104 /Oe. sec.

The working relation for F is the F = 23,487.4f gammas, (F = 234,874

x 10- 6 f gauss). For the Earth's field f lies between 1.5 and 3.0 kc/sec.

The equipment supplied with a magnetometer includes the sensing ele-

ment, magnetometer console, interconnecting cable, and their associated

power supplies. The sensing element is a toroidal coil surrounding a

hydrocarbon fluid with selected characteristics. This is mounted in a

container suitable for the proposed application, i.e., a "bird" or a

"fish" for airborne or seaborne work. The hydrocarbon used in this case

was kerosene. By energising the coil surrounding the hydrocarbon, the

protons were aligned in the direction of the applied field. After allow-

ing a few seconds for.the alignment of the protons to reach equilibrium,

the polarizing field is suddenly removed. The aligned protons then pre-

cess round the Earth's.field, causing an alternating voltage, initially

of the order of 1 pV, to be induced in the coil. 1This voltage, which
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decays as precessional coherence is lost, is applied to a frequency-

measuring circuit through a tuned high gain amplifier. The minimum

operating cycle for reliable results is about .3 sec.

In practice, the coil is arranged co-axially with respect to the

head, so that it makes a satisfactory angle with the geomagnetic field

everywhere except on headings close to the magnetic meridian near the

magnetic equator.

A system employing two mutually perpendicular coils may be used any

where.

The general arrangement of a magnetometer using this method of mea-

surement is shown in Fig. 8.

The console operates directly from a source of DC power ranging from

22 volts to 32 volts.

The time sequence is shown in Fig. 9.

One of the portable proton precession magnetometers was used as a

base station to record the daily variations. The sensor was set on the

top of an 2.4 m foot pole near the base camp. The principle of operation is

the same as for the above equipment.

The recorder has a somewhat small scale and in reading the variations

the reading errors are about + 5 gammas. The daily variations at the base

camp are shown in Fig. 13.

The second portable magnetometer was used for ground surveys, and

is useful for accurate investigations of small areas to look at shallow

s tructures.

The airborne survey was carried out using a Hiller 12E helicopter.

The bird was lifted from the ground on the end of its 80.5 m cable by tak-

ing off vertically. Landing was done using the reverse procedure. The
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Hiller 12E helicopter is small and only allows two people together with

the magnetometer.

Methods of Investigation

Airborne surveys are usually made along a series of parallel tra-

verses oriented as closely as possible to right angles to the trend of

the geologic units. The direction may be chosen parallel to some obvious

geographic feature to aid navigation. The spacing between traverses is

usually one chosen to be approximately equal to or less than the depth

of burial of the magnetic source. Perhaps the most difficult problem in

an airborne survey is to determine the location of aircraft at any instant

in time. The position of a number of distinct points such as mountain

tops, cliff edges, and creek or stream junctions were located on maps,

and in some cases large red panels were laid out for landmarks.

The landmarks could be clearly seen from the start and end positions

of each flight line, a direct course between them being flown by eye. The

beginning and end points, and the crossing of intermediate landmarks were

also judged by eye, each being marked on the magnetometer recording using

a hand controlled event marker. Because it is possible to fly slower, sur-

veys using helicopters are easier than those using fixed wing aircraft,

however, altitude, speed and direction are not as stable.

To process the data the magnetometer chart was divided into one-

tenth mile sections by extrapolation of the known distances between navi-

gation points on the map, and the length of record between successive

marks representing these landmarks. The precision of this method is not

high, and differences can be seen in the same line flown twice at differ-

ent altitudes, however, as each line.was flown at least twice in opposite
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directions (Fig. 16), and the anomalies are generally very large, this

is not considered a serious hazard.

Interpretation of the magnetic profiles depends on ground elevation,

the flight altitude was recorded manually and the ground elevation

read off the map for each of the profiles. The flight directions were

often at different azimuths which were also recorded. Many of the flight

lines concentrated around the center of Novarupta.

The starting point and end points were either marked with flags on

the ground or consisted of conspicuous topographic features, which were

located using a geodimeter and a theodolite.

The plotting was done on a 1:21,120 scale map. Because of the errors

inherent in the method, the cross points of different lines are not well

defined, however, they are very close.

Data Analysis

The total intensity of the magnetic field at any point on the surface

of the earth can be obtained mathematically by means of a harmonic analy-

sis of values obtained by direct observation; potential,

m m pm
w = a (g m cosm 4 + h sinm ) P (cos ),n n n

where the values of a, g, h are known, and assuming no crustal sources

contribute sensibly to the harmonics of degree less than n.

The magnetic field at the Earth's surface (Fig. 10) can be repre-

sented approximately by the field of an eccentric dipole. The difference

between the observed field and the field generated by a dipole is con-

sidered as the anomalous or non-dipole field. The anomalies that are gene-

rated in magnetic materials 'in the Earth's crust are called regional ano-

malies and are assumed to be due to magnetic minerals. These can only ex-
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ist up to the' Curie temperatures of the minerals causing them, so

must be located relatively near the surface of the crust.

Regional intensity anomalies are often related to magnetite deposits

or rocks rich in magnetite, and the wave length of the anomaly give an

indication of its depth. Long wave anomalies usually indicate that the

magnetic body is situated at greater depths.

The earth's magnetic field increases in intensity from south to north

at a uniform rate of 4-5 gammas per mile (Brosge and others 1970). The

Katmai area has such high local gradients and is so small that it is

reasonable to neglect this gradient and use the mean values derived from

the average of all the data as the base value (53655 gammas). The true

value should be obtained from a spherical function of the earth's magnetic

field, but as it is only the relative intensities related to local struc-

tures that are of interest, the total magnetic intensities used were ob-

tained from:

F - F. = F where F = observed value
ob m an ob

F = mean value
m

F = magnetic anomaly
an

Any anomalies found indicate a source underground, such as high magnetic

susceptibility rocks, or non-magnetic materials, the later appearing as a

relative decrease in magnetic intensity. If we know the regional field, it

is possible to calculate the magnetic dipole moment of a source capable

of producing the observed anomaly. In the case of an aeromagnetic survey,

that calculation is not important, because the magnetic intensity is in-

versely proportional to the cube of the distance from the magnetic body

The surveys flown at a high altitude in Katmai give intensities that are

almost the same as the Earth's magnetic dipole field, except in the
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vicinity of Novarupta.

The instrument drift was checked, and daily variation eliminated by

means of measurements made at the base station. The aeromagnetic data

were corrected for daily variations, when magnetic disturbances exceeded

the base value of 53700 ± 5 gammas.

In the auroral zone magnetic disturbances show large variations with-

in short distances, though the distances are still large compared with the

scale of the Valley, so any important variation would have been seen

at the base station.

The reduced total intensity anomaly maps shown below were compiled

from this data using an IBM 360 computer and the program given in Appen-

dix II.

Interpretation of Model Studies

It is possible to estimate the volume and depth of a magnetic body

from the anomalous field produced at the surface. This will be due to the

total intensity of the Earth's magnetic field plus that due to the buried

magnetic material. The intensity of a given magnetic body can be calcula-

ted as follows (Fig. 11):

let F = total intensity observed

H = total intensity of the regional field

B = field due to the buried mass

Using a coordinate system with its origin at the dipole representing the

buried mass, and letting

o = the angle to the observer relative to the dipole axis

m = the effective dipole moment

r = the distance from the dipole center to the observer
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then

H = H + H r

B = B + Hr r

where

B = m sine, B = 2m cose
0 r

3 3
r r

H = -Hsin (7-e) Hr = Hcos (w-)

( 2m cos0 + Hcose)l r + ( m sine - Hsin)l
3 3

r r

then the total intensity

F = /(Fr 2 + F02)
= /{cos20( 2m + H)2 H) + sin20( m -H) 2

3 3
where r r

h = r sin (0- )

therefore

F = /{cos2 0( 2m sin3(0 - a) + H)2 + sin2 0( m sin 3(0-a) - H)2 }

h3  
h 3

We can get the model profiles from above equation for any given volume,

magnetic moment and distance.

Measurements

A series of flight lines was proposed on the basis of the ground

survey made in 1969 by M. Trible (1971). In practice the lines flown de-

pended on the weather, and it was not possible to make a systematic sur-

vey. The aeromagnetic survey was carried out between July 8 and July 28.

As a result, the flight altitude direction and helicopter speed were

variable. The flight lines were concentrated in the vicinity of Novarupta,

but a number of Valley crossings were also made.
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A base station was established at Baked Mountain camp, the location

of which is 58017.5'N, 155 012.0'W and the elevation is 899.3 m. To obtain

a value for the magnetic intensity at the base camp, two lines 66 m long

and 0.6 m apart were marked with stakes at 0.6 m intervals. Magnetometer

readings were made at each stake, the variation of intensity was 100

gamma over this area. Measurements were made at two probe heights, 2.4 m

and 1.2 m from the surface (Fig. 12). The upper values show small diffe-

rences from the lower ones, the mean values being 53680 and 53700 gammas.

The aeromagnetic mean value of the base field used was calculated

from all the available data. Using the average value obtained for each

different altitude, the individual mean fields were calculated. Fig. 15

shows the values obtained, and also shows a pronounced difference com-

pared with total field values obtained from spherical harmonic analysis.

The mean of the mean values was used as the regional field. The anomaly

value AF was calculated from: AF = F observed - F mean field - F daily

variation. The mean field used to prepare the anomaly maps was 53655 y.

This method is very convenient for looking at anomaly patterns and tec-

tonic structures over small areas such as the Valley of Ten Thousand

Smokes. Table 2 presents the direction, altitude, speed, time and course

of the individual profiles. The isopach maps of geomagnetic field anomaly

for each group of flight lines indicates the regional residual intensity.

Six flight levels were used, 550-670m, 730-760m, 915-975m, 1005-1070m,

1160-1190m and 1220m above sea level. The flight altitudes chosen depended

on the topography and the weather.

There were 62 aeromagnetic lines flown, of which two-thirds were

concentrated in the vicinity of Novarupta. This area is important in
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TABLE 2

Flight Flight Elavation Time Flight Flight Elavation Time

Course Direction m, feet (Date Time) Course Direction m, feet (Date Time)

Number Number

2 SW 193.5 745 m(4000) July 13 34 NE 37.0 640 m(2100) July 18 19:50

3 SW 200.5 760 m(2500) 35 SW 227.5 760 m(2500) July 25 13:30

4 E 66.0 775 m(2550)v 36 NE 211.5 760 m(2500)

5 E 50.5 760 m(2500) 37 SW 27.3 1070 m(3500)

6 NW 278.0 915 m(3000) 38 NE 194.5 1160 m(3800)

7 SW 219.0 760 m(2500) 39 W 241.5 1160 m(3800)

8 E 74.5 610 m(2000) 40 NW 290.0 1160 m(3800)

9 Sw/E 211.5 915 m(3000) 41 N 136.5 1160 m(3800) 14:30

11 E 50.5 irregular 42 N 139.9 760 m(2500) 10:00

12 W 50.5 975 m(3200) July 15 12:20 43 N 248.5 760 m(2500)

13 E 50.5 1080 m(3550) 44 E 40.5 775 m(2550)

14 N 309.0 1065 m(3500) 45 S 139.9 915 m(3000)

15 E,W 254.0 610 m(2000) 16:30 46 N 915 m(3000)
670 m(2200) 47 E 92.3 915 m(3000)

16 S 153.5 670 m(2200) 48 .W 250.0 975 m(3200)

17 E 65.1 670 m(2200) 49 E 75.5 975 m(3200)

18 S 158.5 745 m(2450) 50 S 1005 m(3300)

19 S 170.0 915 m(3000) 51, S 143.0 1005 m(3300)

20 NE 23.5 915 m(3000) 52 W 245.5 825 m(2700)

21 W 227.8 915 m(3000) 53 E 251.0 730 m(2400) 10:50

22 SE 117.5 915 m(3000). 54 N 328.5 790 m(2600)

23 E 72.2 915 m(3000) 55 S 166.0 1220 m(4000) July 4 19:30

24 N 345.5 915 m(3000) 56 N 344.7 1220 m(4000)

25 SW 194.5 1190 m(3900) 57 S 172.0 1220 m(4000)

26 N 317.0 1190 m(3900) 58 N 353.5 1220 m(4000)

27 NW 300.0 760 m(2500) July 17 19:30 59 S 169.5 1220 m(4000)

31 NE,SW 35.0 550 m(1800) July 18 19:50 60 E 79.2 1220 m(4000) July 5 11:30

670 m(2200) 61 W 281.5 1220 m(4000)

32 SW 43.5 580 m(1900) 62 N 346.5 1220 m(4000)

700 m(2300)
33 NW 49.0 610 m(2000)

219.0 730 m(2400)
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terms of investigating the role of Novarupta in the 1912 eruption, however,

preliminary and analysis indicates the need for more data in the surround-

ing areas.

The uneven distribution of flight lines makes computation difficult.

Each of the profiles, Nos. 11, 12, 13, 15, 25, 31, 32, 33, 38, 39, 45,

51, were flown at two or more levels in both directions. Generally the

reversed profiles correspond very well with the original, however, as the

speed was usually uncertain and different in each direction due to wind

changes, the extrapolation between known markers on the profiles has an

error due to the speed/distance estimates. An example of the general

correspondence is seen in profile No. 33 (Fig. 16). The location of the

profiles are shown in Figs. 32, 35, 38, 41. The individual profiles are

described below:

No. 15 E and W (Figs. 18, 29, 31)

This line traverses the Lethe Valley at 660 m and 726 m. The profiles

are generally similar, the higher one gives lower values and a smoother

curve. There is a difference of about 80 gammas between the lines, which

is comparatively large compared with the other profiles. This may be an

indication that this area has a thicker flow unit beneath it than those

further down valley.

No. 31 (Figs. 19, 29)

Line No. 31 was flown at 594 m and 726 m. The residual differences

between the two lines are less than 60 gammas on the west side of the

valley, reducing so that the whole east side showed no difference between

the two elevations.

No. 32 (Figs. 20a, 29)

This profile has the same pattern as line 33, but shows more fluctua-

tion in the readings obtained.
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No. 33 (Figs. 20b, 33)

This line was flown at 792 m and 726. m, and had an upper limit of

the between-line differences of about 50 gammas, although there was an

elevation difference of more than 66 m.

Lines Nos. 12, 13, 39, 11 and Ground Traverse(Fig. 17)

These lines were centered around Novarupta, and the intensity decreas-

ed with increasing elevation of the flight lines, the vertical gradients

also decreased, being about 1.14 gammas/m between 1160 m and 1065 m 1.33

gammas/m from 975 m to 915 m. The reason for this may be explained by the

higher magnetisation of the dacitic rocks forming Novarupta Dome. Thin

section studies on these rocks show about 3% magnetite.

The ground survey profile (Fig. 14) in the same area showed many

more small scale variations, the highest of which was a 1450 y anomaly near

the summit of Novarupta. All the profiles showed a positive anomaly lo-

cated around the lava dome, which is presumably due to the remnant magne-

tization of the rocks composing Novarupta Dome.

Lines Nos. 41, 45, 58, 59 (Figs. 24, 25)

These lines are located on Katmai Pass and on the flanks of Mt. Tri-

dent, crossing Novarupta and Trident Basin to Broken Mountain. Parts of

these profiles shown an inverse relationship between relative land elevation

and magnetic intensity, which implies that the lower flanks of Trident

and Broken Mountain are composed of low susceptibility Naknek sediments. The

magnetic difference is clearly seen in the profiles. The vertical

gradient is + .3 ' .8 gammas/m.

Line Nos. 25 and 38 (Fig. 21, 39)

These profiles traverse Novarupta from south to north at 1155 m and

1187 m. They show symmetrical magnetic features all positive with respect
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to the base line of 53655 y.

The anomaly pattern is about three times as wide as the visible

part of Novarupta lava dome.

No. 56 N (Figs. 22, 42)

56 N (1220 m) crossed from Falling Mountain via Novarupta basin to

Baked Mountain. The part of the profile across Falling Mountain is typi-

cal of an andesitic volcanic feature. The maximum intensity is 56920 gam-

mas. The steepness of the gradient at the base of Baked Mountain indicates

a fault structure between the Naknek sediments of Baken Mountain showing

low intensities, and presumed volcanics in the Novarupta Valley.

No. 57 S (1220 m)(Figs. 23, 42)

This profile crossed Broken Mountain via Novarupta to Katmai Pass at

1220 m. It is typical for a body magnetized in the direction of the present

field. The depth of an equivalent magnetic dipole has been calculated

(see p ). Stumbling Hill is of smaller intensity but similar to Nova-

rupta. The relation of Stumbling Hill to the sediments of Broken Mountain

is not clear from the profiles.

No. 61 W (1220 m) (Fig. 42)

This section crossed Trident basin via Novarupta, Novarupta basin,

and the Lethe Valley. Compared with the lower altitude flights, the sec-

tion over Novarupta gave magnetic intensities of low frequency and low

amplitude.

The section crossing the main valley looks almost flat indicating

that this pyroclastic flow has a low effective magnetic intensity.

No. 62 N (Fig. 42)

This flight line, from the base of Mt. Mageik along the west flank

of Baked Mountain and across the Knife Creek branch at 1320 m gives an
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almost flat magnetic profile and shows no indication of underground

structures or magnetic bodies.

Ground Traverses (Fig. 14)

Although the aeromagnetic anomalies do not give any indication that

the near surface material is irregularly magnetized, a very detailed

magnetometer survey of the outcrops revealed a highly irregular small

scale anomaly pattern. This indicates that the magnetization is not uni-

form over distances of more than a few meters.

The ground magnetic survey covered the head of the Valley of Ten

Thousand Smokes (Figs. 26, 27, 28). Two of the survey lines corresponded

exactly with seismic profiles, these being along a median line down the

Intermediate Valley, between Baked and Broken Mountains (Fig. 27), and a

median line between Falling and Baked Mountains in Novarupta Valley

(Fig. 26). A ground traverse was also made across Novarupta Valley on a

line through the peaks of Falling and Baked Mountains (Fig. 17). The lo-

cation of the magnetometer stations was obtained using a tape measure;

these data are corrected for level changes, i.e., corrected to the hori-

zontal distances between stations. The elevation of each position was

measured using a barometric altimeter. As the magnetometer used for these

surveys normally served as the base station, no record of the daily varia-

tion was available. The readings at the base station before and after the

surveys were noted, and the change over the few hours involved, was assum-

ed to be linear. The data were plotted on 1:21120 scale maps. The length

of sensor support pole was 8 ft. for all these surveys and care was taken

to have no magnetic material around the probe.

The most significant features are associated with fumaroles, this
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was particularly true for the line along the axis of Novarupta Valley,

where a line of fumarolic holes are located near the foot of Nova-

rupta. The fumaroles are not currently active. The relationship between

the fumaroles and the high magnetic anomalies is not clear, but is pro-

bably associated with the deposition of magnetite. Near the foot of Nova-

rupta a depression about 20 or 30 m across contains many volcanic bombs

and volcanic breccia. It is possible that this ejecta might also be re-

lated to the observed magnetic intensity. These profiles showed generally

high amplitude and short wavelength anomalies (see also Figs. 17,26).
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CHAPTER III

MAGNETIC DATA

The contour maps used in the following.sections were p,',-duced using

the IBM 360 computer. The aeromagnetic data from each range of flight

levels has been computed separately, and is presented in three maps, an

index map, a total intensity map and an anomaly map using 53655 gammas

as a base line.

In general, the two maps have been plotted with different contour

intervals, so show features with different scales. It should perhaps be

noted here that the computer tends to "create anomalies" for areas in

which there is no data, so great caution must be used in interpreting

these maps.

Since the base line from which the anomaly maps are drawn is the mean

value of the field within the area of the Valley of Ten Thousand Smokes,

the anomaly maps are particularly useful in looking for variations with-

in the ash flow.

Novarupta Area

The rim of the Novarupta structures appear as an oval feature elon-

gated east-west with the dome of Novarupta towards the western end.

If Novarupta was the sole source of pyroclastics, then the vent of

Novarupta must have been higher during the eruption to account for the

present pyroclastic distribution. In this way one eruptive center could

account for the whole pyroclastic flow.

The distribution of magnetic anomalies obtained from the 915 m and

975 m flight altitudes (Figs. 36, 37, 38) showed an oval anomaly pattern
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in the vicinity of Novarupta and Stumbling Hill, which perhaps indicates

a simple structure.

The oval magnetic anomaly around Novarupta is not characteristic of

crater faulting, because the horizontal magnetic gradient is too shallow

(Fig. 44). A negative magnetic anomaly is associated with the crater rim

which is probably due to underlying Naknek sediments. In contrast, Fall-

ing Mountain has NE-SW fault evidenced by the 100-150 m high north face.

The magnetic profiles over these faults show very steep gradients, and

Falling Mountain has a very high anomalous field indicating that this

mountain is of different material, and has a different susceptibility from

that surrounding it.

The postulated collapse of ancestral Novarupta probably took place

shortly after the main eruption, and the position and shape of the elon-

gate crater was controlled by the overall faulting in the volcanic

area.

The changes in intensity with increasing altitude over Novarupta

dome indicates that the magnetic source is relatively shallow.

The magnetic map at the 915 m - 975 m flight altitude over the top

of Novarupta shows a conspicious double peak (profiles 5, 9, 12, 13) (Fig.

17) while those flown at 1160 ' 1190 m show a smaller difference of mag-

netic intensity (Fig. 21). The magnetic contour map gives a pattern simi-

lar to that expected if the magnetization were in the same direction 
as

the present field. Profile number 11 (Fig. 17) crossing Novarupta and

Stumbling Hill seems similar to that predicted by Rikitake and Hagiwara

(1965) for a double cone mode (see appendix). They show an anomaly over

closely spaced cones, from which it is suggested that the two positive

peaks were probably made by adjacent intruded or extruded material. In
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profile 11, the second peak is associated with the many collapse features

of Stumbling Hill, and may thus point to some kind of double volcano. The

magnetic map based on 1220 m profiles shows only one peak, the double

peak having disappeared. This indicates that the surface of the magnetic

body may be roughly concave between Novarupta and Stumbling Hill. In this

way lower altitude flights would see a double cone similar to those of

Rikitake's model (see appendix II), however in high altitude flight maps

the two peaks in the magnetic distribution can be neglected. The center

of the second magnetic peak is displaced towards the northeast from the

center of Novarupta dome (Fig. 40).

The concealed magnetic body causing the main anomaly may be the same

material as the plug of Novarupta, and may be still moving beneath Stumb-

ling Hill as evidenced by very fresh looking fault 
scarps. There is also

the possibility that Stumbling Hill may be a dome similar to Novarupta.

Curtis (1968) demonstrated subsidence structures which took place after

the eruption of Novarupta, and estimated an elevation change of approxi-

mately 150 m. This subsidence alone would not be enough, but the possi-

bility of removal of part of ancestral Novarupta by explosive activity

exists.

The Novarupta phenomena seems to be similar in character to Usu Dake

in Japan. Nuee ardente type eruptions took place on Usu Dake in 1822, and

again in 1910, when the Usu appeared as a crypto-dome (volcano) (rising

dacite magma?), and in 1944-45 it made a lava dome as pseudo-belonite.

These rocks were dacites and had a high viscosity of the order of

1011 poise, and a temperature of 980 0 C (Minato et al. 1965).

The only large-scale variations of total intensity seen in the aero-

magnetic surveys were those associated with Novarupta dome, Falling Moun-
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tain and Cerberus. The investigation has proved useful for looking at

the magnetic effects of the central vent, but surprisingly shows nothing

that can be clearly interpreted as magnetic peaks away from, but still

directly associated with, the dome. For comparison, one can consider the

case of Hakone caldera in Japan, where good agreement is found between the

magnetic effects and the position of both the cone and the caldera rim.

This difference may be due to the number of eruptions of the volcano. Ha-

kone has a more complex history and represents the accumulation of many

eruptions. The triple volcano of Hakone is 10 km in diameter and later

activities have been controlled by the first eruption which produced local

faulting.

The dominant magnetic trend in the Katmai area does not parallel the

lines of the Earth's main field, but seems to be affected only by the

overall geologic structures and hence only indirectly by previous volcanic

activity.

The peak of the anomaly pattern seems to be a little to the east of

the topographic high. In the aeromagnetic profiles, Novarupta shows a re-

markable positive pattern of about 800 gammas over the dome, furthermore,

negative anomalies of about -250 gammas appear in a symmetrical pattern

about a ENE-WSW axis, which is parallel to the tectonic trend. These ne-

gative anomalies are assumed to be due to sedimentary rocks of low magne-

tic content (Naknek). Comparing this map with the 1160 %0 1190 m flight

altitude map (Fig. 41), it seems that the positive anomalies have de-

creased and are smoother at higher elevations (Fig. 44). The almost cir-

cular negative anomaly around Novarupta dome derived from the 915 2 975

m lines (Fig. 38), shows a distribution which also agrees with the sur-

face geology. The main positive anomaly reflects the exposed lava dome.
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The total intensity map derived from profiles flown at 1220 m (Fig.

42, 43, 44) show features characteristic of the main tectonic structures

in a northeast to southwest direction. These are offset in a small area

along an east-west axis making an en echelon structure. Two steep anoma-

lies are associated with Falling and Cerberus mountains (1165 m, 1080 m).

Model Profiles

From the equation used for the model studies (see Model studies),

F = /{cos26( 2m sin3(0-a) + H)2 + sin26( m sin3(6-a) - H) 2 }

h 3  h 3

Then, the dipole moment can be represented by:

m = MoV, where Mo is the magnetic moment per unit volume and V is the

volume of the body.

h = the distance from the dipole center to the flight line.

a = the inclination of the ambient field.

Assuming this model, the field expected for an ellipsoidal tube was

calculated. The values chosen were

-3
x = 720m, y = 650m and M = 2 x 10 emu/cc

where x and y are the semi-major and semi-minor axes of the ellipse. These

dimensions are based on the observed size of Novarupta and Stumbling Hill

(Fig.21 ).

In order to obtain profiles using the above relations, it is neces-

sary to choose values for the three variables V, m and h. This has been

done using the "best guess" values based on observations.

From the top of the magnetic body to the flight level was 300m, so

that

h = 300m + L/2, where L = the length of the tube.
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V = 7xy(300 + L/2)

m = Txy(300 +L/2)M

For any given value of h, it is possible to draw a profile corre-

sponding to.the angle 0. The result of these calculations are shown as

profile in Fig. 3 2 . The assumptions used are very rough, however, com-

paring the observed and calculated data it is possible to recognize simi-

lar features in both.

If the dimensions of the system chosen are approximately correct,

then the dipole center appears to be located about 1 km below the 1.22 km

flight line, or about .9 km below the surface.

Using the simple model described above it is not possible to make

both the values of maxima and minima coincide, and at the same time have

similar values for the horizontal distance between them when comparing

observed and calculated profiles. A better fit could be obtained by using

a more complicated shape for the body, and/or increasing the inclination

of the magnetization. However, the general fit of the two profiles is

sufficiently good to indicate a relatively shallow source at about 900m

below the surface for the Novarupta-Stumbling Hill anomalies.

The exposed lava dome is about 300 m in diameter, so if the assump-

tions are correct, then there is more magnetic material on the northeast

side of the present lava dome.

A similar calculation using the technique of Vacquier et al (1951)

gives a value for the long axis of the magnetic body beneath Novarupta as

about two-thirds of a mile and about half a mile for the short axis.

Profiles 57S and 61E taken in north-south and west-east direction

respectively (Figs. 17,23) crossing Novarupta Dome show very elliptical

magnetic body features. They show large positive anomalies that coincide
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with the rhyodacite lava dome. The dome is composed of highly magnetic

material but must have a wider distribution than is indicated by the ex-

posed dome itself. The maximum anomaly on Falling Mountain is 2500 gammas,

it has a very steep gradient and shows a circular cone-like feature. Using

similar calculations to those used for Novarupta, the magnetic source has

a diameter of about 700 m and the dipole center is located at 1000 ' 1050

m below the flight line. These high gradients for the magnetic intensity

and the shallow dipole source, support the idea that the volcanoes of 
the

Katmai area are younger than Tertiary. This is because the data precludes

a thick sequence of volcanics, unless the temperatures beneath the vol-

canoes are higher than the Curie Point, also the magnetic distribution

would be more complex.

Intermediate Valley and Fumaroles

Magnetic anomalies of fumarolic origin were not generally seen in the

aeromagnetic maps except for those in the southern valley located on the

supposed fault line and along the flank of Baked Mountain (Fig. 35). This

area of fumarolic activity appears to be relatively large and 
involve a

large volume of magnetic material. It is possible that the acidic gases

and heat might be supplied by some kind of intrusive source or magma

chamber. In general, there appear to be two kinds of fumaroles: a) those

that originate in the pyroclastic flow (nuee ardente), and b) those of

deeper origin from at least underneath the Naknek sediments which are

fault controlled (Gedney 1969).

Ground magnetic profiles along the center line of the Novarupta Val-

ley (Fig. 17) show magnetic anomalies that correspond exactly with aero-

magnetic profiles, except for a few sharp, and presumably very local, ano-

malies. The narrow magnetic anomalies of high frequency and high amplitude
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in the vicinity of fumaroles are able to be directly related to the

surface expression of fumarole activity (Trible 1971). The high ano-

malies also indicate a source which is both shallow and narrow.

The ground magnetic profile which traversed the Novarupta Valley

from Falling Mountain to Baked Mountain also showed fumarole associated

anomalies (Fig. 25).

Intermediate Valley

The Intermediate Valley has a thin pyroclastic flow in comparison

with the other branches of the Valley (Kienle 1967, Fenner 1922). A de-

tailed survey over a fumarole area (Trible 1970) again gave high frequen-

cy and high amplitude anomalies.

A profile along the median line of the Intermediate Valley was ob-

served at two heights, 2.4 m and 1.2 m (Fig. 27). If the data from these

two elevations are plotted, it can be seen that the sharp high amplitude

anomalies also have high vertical gradients of total intensity of about

16.7 " 2.5 gammas/m again indicating a shallow origin. The higher intensity

anomaly areas are all normally magnetized, but the magnetization of the

other smaller anomalies are uncertain.

The margin of Intermediate Valley shows one of the highest anomalies

(250-300 gammas) recognized in the 730-760 m aeromagnetic survey. This

magnetic high correlates with the fumarole grid of Trible (1970) and in-

dicates a considerable mass of magnetic material. According to Trible

(1971), even where large fumaroles existed, the magnetic minerals concen-

trated by the fumarole would leach and weather out very quickly after acti-

vity stopped. Trible also suggests that it is possible for the magnetic
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minerals to concentrate in the mouth of the fumaroles and to occasionally

be preserved. Where the magnetic minerals are preserved, a magnetic ano-

maly exists, but the absence of magnetic expression does not preclude an

old hot fumarole. Therefore, it is suggested that the fumaroles along the

margin of the Intermediate Valley were active until comparatively recent

time, and the magnetic minerals were formed hydrothermally in the mouth

of the fumarole vents, and were also concentrated at depth and presumably

preserved in some way.

Knife Creek, Lethe River and Main Valley Profiles

Seven flight lines in the Main Valley and Lethe Valley were flown at

550-670 m and the results contoured (Fig. 29, 30, 31). The total field

measurements showed flat profile when compared with those from the head

of the valley, but with both sides of the main valley and the northside

of Baked Mountain showing lower intensities. In other words, the low

values appear to correspond with the sedimentary rocks (Naknek formation)

which contain only a small amount of magnetic material.

The anomalies were mostly less than 250 gammas with respect to the

average value. This small value could be caused by a source within the

pyroclastic rocks.

The contour map of the 730-760 m flight line data (Fig. 33, 34, 35)

shows four positive and three negative anomalies in the upper part of the

valley. The down valley portion showing the same situation as the 550-670

maps, but with the values decreasing in accordance with a vertical

gradient of .2 gammas. The anomalies over the valley floor are not larger

and are probably due to the irregular topography of the U-shape valley
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left by the last glacial retreat. Significant anomaly patterns seen by

contouring the data are negative and largely associated with areas of

Naknek sediments. A positive anomaly extends over a comparatively large

area in the.Knife Creek Valley, a portion of Broken Mountain and the

lower end of the Intermediate Valley, however, in the center of the posi-

tive area is a negative anomaly. This negative anomaly may be a function

of the line spacing, but the overall positive anomaly appears real. The

steepness of the horizontal gradients point to a fault structure, and may

well be connected with the higher fumerolic activity of the area mentioned

before.

With regard to the Main Valley, the total intensity decreased as

expected with higher elevation, i.e., the gradient of the magnetic

field probably represents a normally magnetised feature. The smoothing

of the curve shows that the sources of the irregular field are shallow,

and these profiles show nothing of the deeper structures (Fig. 31, 35).

Profiles in the Intermediate Valley at 1160 and 1190 m, (Fig. 39, 40,

41) suggests a complicated pattern in the distribution of thickness of

volcanics, and by implication a complicated paleotopography.

Negative anomalies correlate with the head of the Intermediate Valley,

and the Novarupta and Trident basins, however, these anomalies show com-

paratively lower amplitudes for higher flight levels as might be expected

for a relatively shallow source. At the 1190 m flight level the negative

anomaly associated with the Naknek sediments of Baked and Broken Mountains

is reduced. This is presumably because the magnetic bodies causing the

positive-negative contrast are shallow and thin. At the higher altitudes

the magnetic profiles do not show any marked effect directly attributable
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to the pyroclastic valley fill. This fact suggests that the pyroclastic

flow is not very thick.

Pyroclastic Temperatures

The minimum welding temperature of acidic volcanic glass is about

6000C (Boyd 1961). It is also possible to obtain an idea of the tempera-

ture regime from the magnetic properties of the rocks. The presence of a

finely dispersed uniformly magnetized magnetite must have been formed

under relatively high temperature condition (above the Curie Point for

magnetite (5600C)).

The welding and deformation of glass particles can take place at a

very low pressure, but the temperature, necessary for a complete welding,

should be at least 8000 C (Smith and others 1958). Lovering extrapolated

back the measured temperature of fumarole No. 1 measured by Zies at 6000 C,

and found it to be between 800'C and 90000C. The fact that the pyroclastic

flows were found to be uniformly magnetized (Trible 1971) along the

direction of the present magnetic dipole field, and were magnetically

stable, demonstrated that the temperature was higher than the Curie Point

of the minerals involved (Packer, personal communication). The pyroclastic

flows sampled were not all welded, which indicates lower temperatures

prevailed for some areas for some of the time, or alternatively that

some areas were heated more than others after deposition.

As shown above, the pyroclastic flows, as opposed to the interbedded

airfall deposits, must have been laid down at temperatures between 5600

and 8000C.

The average susceptibility of the pyroclastics from the Lethe indu-

rated ash is 1.33 x 10- 3 emu/cc (Trible 1970), with a maximum value of
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1.76 x 10 - 3 emu/cc. Trible (1971) also noted that - "examination of the

character of the tuff comprising the individual discs disclosed the

correlation of colored streaks with measured susceptibility: white and

brown streaks are prominent in discs of lower susceptibility, black bands

are associated with the higher values". The Knife Creek pyroclastic flow

units have a mean value of 1.8 x 10 - 3 emu/cc and other susceptibility mea-

surements on the tuff unit from various locations in the Valley give com-

parable values.

Proven pre-1912 pyroclastic flows have not been observed and the

similarity of the susceptibility of the different tuff units would indi-

cate that if they exist, they had a similar origin to the 1912 flow units.

Thus, pre-1912 units would not be distinguishable magnetically.

Samples of the Novarupta banded lava gave a bimodal distribution of

magnetic susceptibility values. The gray glass gave a susceptibility of

0.3 x 10 - 3 emu/cc in contrast with an average for the prominent dark

streaks of 1.4 x 10 - 3 emu/cc (see Table 3).

Trible concluded that both the Naknek sediments and the fumarolic

altered ash can be represented by 0.5 x 10 - 4 emu/cc. The susceptibilities

of the airfall pumice, the water-laid tuff, the indurated ash and the
-3

higher mode Novarupta lava gave 1.2 x 10-3 emu/cc. Hydrothermally altered

sediments and pyroclastic rocks often gave high susceptibility, presumably

due to deposition of magnetic minerals. In many cases, as the fumarolic

activity becomes weaker, the hydrothermal activity changes in character,

and resolution of the magnetic minerals takes place. Unless protected by

an impervious layer, the high intensity magnetic minerals disappear.

The altered air fall tuff sediments have a high susceptibility in

some fumarolic areas, as indicated by the magnetic ground surveys, though
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the volume of effective magnetic minerals is limited. When the elevation

of the survey lines was higher than the magnetic mass diameters, their

effect was very small.

TABLE III

-3
Dark band 1.4 x 10 3 emu

Mt. Novarupta Dacite
Gray Glass 0.3 x 10 - 3

-4
Naknek Formation 1.0%6.5x10

Indurated Tuff 1.2,xl.3xO1 3
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CHAPTER IV

CONCLUSION

The most outstanding feature of the magnetic anomaly pattern is the

magnetic high found in the vicinity of Novarupta. This suggests that the

rocks underlying this area are more strongly magnetized than others in

the surrounding area. The magnetization of the rocks composing the ex-

posed dome of Novarupta are generally not very strong compared with other

volcanics, having susceptibilities around 1 x 10 - 3 emu/cc.

The magnetic anomaly pattern of Novarupta as seen from lower eleva-

tions showed high frequency and high amplitude patterns such as would be

generated by double volcanic cones with shallow 
structures. However, these

small scale anomalies disappeared at higher elevations and indicate a

single lava dome.

The crater rim features and moat visible around Novarupta are re-

flected in the magnetic anomaly maps by low amplitude and low frequency

magnetic patterns, these are typical of those observed over thick Naknek

deposits. The obvious interpretation is in terms of the surrounding 
ma-

terial being low susceptibility sediments, through which the plug or 
dome

of Novarupta has been pushed.

The oval anomaly patterns around Novarupta are elongate in an ENE-

WSW direction, and include Stumbling Hill. Although no outcrops were 
found

on Stumbling Hill, there is good reason to think that this hill is 
formed

by intruded or domed-up material similar to that of Novarupta.

The magnetic anomaly pattern changes suddenly at the edge of Falling

Mountain, Mt. Mageik and Mt. Trident. This is presumably due to the mass

of magnetic material forming these mountains.

80



A pair of negative and positive magnetic anomalies is associated

with each of Novarupta, Falling Mountain and Mt. Cerberus, and is similar

to that expected if each of these is considered as a dipole magnetized in

the direction of the present geomagnetic field. It is of interest to note

that the elongation of the Novarupta magnetic anomaly and the volcanoes

of the area are all roughly aligned parallel to the structural trend of

the Alaska Peninsula.

The most acceptable model based solely on magnetic data suggests

that Novarupta and Stumbling Hill are pipes of magnetic igneous material

intruded through the essentially non-magnetic Naknek formation. This then

makes it difficult to visualize a much larger ancestral Novarupta, high

enough to be the source of the pyroclastic fill for all parts of the

Valley of Ten Thousand Smokes at once. This would require that either the

material of ancestral Novarupta was largely low susceptibility and thus

similar to the Naknek, and the destruction of the original peak was by

collapse, or, that it was a composite cone similar to the volcanoes seen

in the area today, and the material was removed explosively. This would

presumably require that the whole composite cone down to Naknek bedrock

be removed. Neither of these possibilities fit well with the field evi-

dence.

Subsidence by some form of block faulting is also a possibility, but

these will only be seen magnetically where there is a sufficiently large

susceptibility contrast. High horizontal magnetic gradients indicative of

faulting are seen along the base of Falling Mountain, and also associated

with the northern part of Broken Mountain. The gradients in these two

areas may well have been enhanced by fumarolic action along the proposed

fracture zones.
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Over the flat portion of the Valley, no large marked anomalies are

found, though a number of small scattered local magnetic highs are usually

associated with fumarolic features. At the foot of Broken Mountain and

across the lower end of the Intermediate Valley, negative anomalies of

the order of a few hundred gammas are found around the recently active

geothermal areas.

A number of weak magnetic highs seem to be associated with sharper

peaks over apparently thicker pyroclastic flows. As these anomalies

amount to only a hundred gammas or so, and are local in extent, they

probably represent minor variation in the thickness of flow units or per-

haps an accumulation of magnetite from fumaroles.

Trible (1971) discussed the possibility that the glacial drift has

a high susceptibility and could account for some of the magnetic highs,

and it is also possible that some material interpreted as high susceptibi-

lity glacial drift may in fact be pre-1912 flow units.

82



REFERENCES

Aramaki, S. 1969 Some problems of the theory of caldera formation, Bull.

Volcanol., Ser. 2, Vol. 14, No. 2, pp. 55-76.

Barazangi, M. and J. Dorman 1969. World seismicity maps compiled from

ESSA, Coast and Geodetic Survey, Epicenter data, 1961-1967, Bull.

Seism. Soc. Am., Vol. 59, No. 1, pp. 369-380.

Beloussov, V. I. and B. V. Ivanov. 1967. Pumice formations in the area

Uzon Depression Geysernaia River Valley in Kamchatka, Bull. Volcanol.

Tome XXX, pp. 75-80.

Berg, E., S. Kubota and J. Kienle. 1967. Preliminary determination of

crustal structure in the Katmai National Monument, Alaska, Bull.

Seism. Soc. Am., Vol. 57, No. 6, pp. 1367-1392.

Bowen, N. L. 1928. The evolution of the igenous rocks, Princeton Univ.

Press, pp. 54-62.

Boyd, B. 1961. Welded tuffs and flows in the rhyolite plateau of Yellow-

stone Park, Wyoming, Bull. Geol. Soc. Am., Vol. 72, No. 3.

Brosge, W., E. E. Brabb and E. R. King. 1970. Geologic interpretation of

reconnaissance aeromagnetic survey of Northeastern Alaska, U. S.

Geological Survey Bull. 1271-F.

Burk, C. A. 1965. Geology of Alaska Peninsula-Island Arc and Continental

Margin, Geol. Soc. of Am., Memoir No. 99, Part 1 - 3.

Curtis, G. H. 1968. The stratigraphy of the ejecta from 1912 eruption of

Mount Katmai and Novarupta, Alaska, in: Studies in Volcanology - a

memoir in honor of Howell Williams, Geol. Soc. Amer. Mem. 116, pp.

153-210.

Decker, R. W. 1963. Proposed volcano observatory of Katmai National

Monument, Alaska, A preliminary study, Dartmouth College.

Fenner, C. N. 1920. The Katmai region, Alaska and the great eruption of

1912, J. of Geol., Vol. 28, No. 7, pp. 569-606.

1922. Evidences of assimilation during the Katmai eruption of

1912 (abs.), Geol. Soc. Am. Bull., Vol. 33, No. 1, p. 129.

1925. Earth movements accompanying the Katmai eruption, J.

Geol., Vol. 33, No. 2, pp. 116-139, No. 3, pp. 193-233.

Fenner, C. N. 1926. The Katmai magmatic province, J. Geol., Vol. 34, No.

7, pp. 673-772.

1950. The chemical kinetics of the Katmai eruption, Part 1,

Am. J. Sci., Vol. 248, pp. 593-627.

83



Forbes, R. B., D. K. Ray, T. Katsura,-H. Matsumoto, H. Haramura, and M. J.

Furst. 1969. The comparative chemical composition of continental is-

land vs. arc andesites in Alaska, Proceedings of the Andesite Con-

ference, International Upper Mantle Committee, pp. 111-120.

Gedney, L., C. Matteson and R. B. Forbes. 1970. Seismic Refraction Pro-

files of the Ash Flow in the Valley of Ten Thousand Smokes, Katmai
National Monument, Alaska, J.G.R., Vol. 75, No. 14, pp. 2619-2624.

Gorshkov, G. S. 1958. On some theoretical problems of volcanology, Bull.

Volcanology II, Vol. 19, pp. 103-113.

Grant, F. S. and G. F. West. 1965. Interpretation theory in applied geo-

physics, (Part II), geomagnetic field, McGraw-Hill Book Company.

Griggs, R. G. 1922. The Valley of Ten Thousand Smokes, Am. Geograph. Soc.,

p. 340.

Grim, P. J. and B. H. Erickson. 1969. Fracture zones and magnetic anoma-

lies south of the Aleutian trench, J. Geophys. Res., Vol. 74, pp.

1488-1494.

Grow, J. A. and T. Tanya. 1970. Mid-Tertiary tectonic transition in the

Aleutian arc, Geol. Soc. Am. Bull., Vol. 81, No. 12, pp. 3715-3722.

Hagiwara, Y. 1965. Analysis of the results of the aeromagnetic surveys

over volcanoes in Japan (1), Bull. Earthquake Res. Inst., Vol. 43,
pp. 529-547.

Kagami, H. and R. Tsuchi. 1968. Miocene marine fossils on the Japan trench,
Records of Oceanography, Works in Japan, Vol. 1, p. 1.

Kanamori, H. 1970. Mechanism of earthquakes, Shizen (Nature) 25, No. 10,
pp. 92-99.

Keller, S. A. and H. N. Reiser. 1959. Geology of the Mount Katmai area,
Alaska, U. S. Geological Survey, Bull. 1058-G, pp. 261-298.

Kienle, J. 1969. Gravity survey in the general area of the Katmai National

Monument, Alaska, Univ. of Alaska, Ph. D. Thesis.

Kienle, J. 1970. Gravity Traverses in the Valley of Ten Thousand Smokes,
Katmai National Monument, Alaska, J.G.R., Vol. 75, No. 30, pp. 6641-
6649.

Kienle, J., D. Bingham and R. Forbes. 1970. Seismic and geological evi-
dence of pre-1912 tuff deposits in the Valley of Ten Thousand Smokes,
Katmai National Monument, Alaska (abstract), EOS Trans. AGU. 51,
p. 829.

Kubota, S. and E. Berg. 1967. Evidence for magma in the Katmai volcanic
range, Bull. Volcanol., Tome XXXI, pp. 175-214.

84



Kuno, H. 1956. Volcano and volcanic rocks, Iwanami Public Co.

Kuno, H. 1968. Origin of andesite and its bearing on the island arc struc-
ture, Bull. Volcanol., Tome XXX, pp. 142-176.

Luntey, R. S. and others. 1954. Katmai National Monument, U. S. National
Park Service Interim Report.

Matsumoto, T. 1971. Seismic bodywaves observed in the vicinity of Mt.
Katmai, Alaska, and evidence for the existence of molten chamber,
Geol. Soc. Am. Bull., Vol. 82, pp. 2905-2920.

Matsuzaki, T. and T. Utashiro. 1966. On the aeromagnetic surveys in the
Kagoshima Bay and its vicinity, Rep. of Hydrographic Res., No. 1,
pp. 23-25.

Minakami, T. T. Ishikawa and K. Yagi. 1951. The 1944 eruption of volcano
Usu in Hokkaido, Japan - History and mechanism of formation of the
new dome "Showa-Shinzan", Bull. Volcanol., Series II, Tome XI, pp.
45-157.

Minato, M., M. Funahashi and M. Gorai. 1965. The geologic development of
the Japanese Islands, Tsukiji Shokan, Chapter 5.

Nayudu, R. Y. 1964. Volcanic ash deposits in the Gulf of Alaska and
problems of correlation of deep-sea ash deposits, Marine Geol.,
Vol. 1, No. 3, pp. 194-212.

Peter, G., D. J. Elvers and M. Yellin. 1965. Geologic structure of the
Aleutian Trench, Southwest of Kodiak Island, J. Geophys. Res., Vol.
70, No. 2, pp. 353-366.

Ray, Dipak, K. 1967. Geochemistry and petrology of the Mount Trident
adnesites, Katmai National Monument, Alaska, Univ. of Alaska, un-
published doctoral dissertation.

Rikitake, T. H. Tajima, S. Izutuya, Y. Hagiwara, K. Kawada and Y. Sasai.
1965. Gravimetric and geomagnetic studies of Onikobe area, Bull.
Earthquake Res. Inst., Vol. 43, pp. 241-267.

Rikitake, T. and Y. Hagiwara. 1965. Magnetic anomaly over a magnetized
circular cone, Bull. Earthquake Res. Inst., Vol. 43, pp. 509-527.

Runcorn, S. K., et al. (eds.). 1967. International Dictionary of Geophy-
sics (2 vols.) Oxford: Pergamon.

Smith, R. L. and others. 1958. Welded tuffs, Experimental I (abstract),
Am. Geophys. Union Trans., Vol. 39, No. 3, pp. 532-533.

Snyder, G. L. 1954. Eruption of Trident Volcano, Katmai National Monument,
U. S. Geol. Sur., Circular 318, p. 7.

Speranskaia, I. M. 1967. Okhotsk inimbrite province, Bull. Volcanol., Tome
XXX, pp. 56-61.

85



Stacey, F. D. 1969. Physics of Earth, Part 6, pp. 157-191, John Wiley and
Son.

Sugimura, A., T. Matsuda, K. Chinzei and K. Nakamura. 1963. Quantitative

distribution of late Cenozoic volcanic materials in Japan, Bull.
Volcanol., Tome XXVI, pp. 125-140.

Sugimura, A. 1967. Chemistry of volcanic rocks and seismicity of the

earth's mantle in the island arcs, Bull. Volcanol., Tome XXX, pp.
319-334.

Sumner, L. 1952. Magnificent Katmai - the unfolding story of a great
wilderness in tradition - Katmai National Monument, Sierra Club
Bull., Vol. 37, No. 10, pp. 29-52.

Tobin, D. G. and L. K. Sykes. 1966. Relationship of hypocenters of earth-

quakes to the geology of Alaska, J. Geophys. Res., Vol. 71, pp.
1659-1667.

Trible, M. 1967. Thesis

Tsuboi, C. 1961. The history of earth, Part II, pp. 29-58, Iwanami Public
Co.

Tsuya, H. and R. Morimoto. 1963. Types of volcanic eruptions in Japan,
Bull. Volcanol., Tome XXVI, pp. 209-222.

Uyeda, S. and A. Sugimura. 1968. Island arcs, Iwanami Science series.

Vacquier, V., N. C. Steenland, R. G. Henderson and I. Zeiz. 1951. Inter-
pretation of aeromagnetic maps, Geol. Soc. Am. Memoir 47.

Vacquier, V. and S. Uyeda. 1967. Paleomagnetism of nine seamounts in the

western Pacific and of three volcanoes in Japan, Bull. Earthquake
Res. Inst., Vol. 45, pp. 815-848.

Von Huene, R. and G. G. Shor, Jr. 1969. The structure and tectonic history
of the Eastern Aleutian Trench, Geol. Soc. Amer. Bull., Vol. 80, No.

10, pp. 1889-1902.

Williams, H., G. Curtis and W. Jule. 1954. Preliminary notes on geological

works date on Mt. Katmai and in the Valley of 10,000 Smokes, Alaska,
U. S. National Park Service, Interim Report.

Yokoyama, I. 1965. Structure of calderas and their origin, Bull. Volcanol.
Ser. 2, Vol. 10, pp. 119-127.

Yokoyama, I. 1969. Some remarks on caldera, Bull. Volcanol., Ser. 2, Vol.
14, No. 2, pp. 77-83.

Yukutake, T. and Y. Hagiwara. 1965. Magnetism of volcanoes, Bull. Volcanol.
Ser. 2, Vol. 10, pp. 100-109.

86



Appendix I

Steinberg and Rivosh (1965) concluded that the magnetic anomalies

were controlled by the shape of the volcanic pile by using the Rikitake

model. This was especially true for dormant volcanoes, where there is a

magma reservoir maintaining temperatures over the Curie Point, as it is

recognized that the anomalies are dependent on the remnant magnetization

of rocks. Figs. I, II, III and IV show the analytically computed total

magnetic intensity anomaly at five different elevations above Magnetized

Circular Cone (after'Rikitake and Hagiwara, 1965).
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.... Magietic Anow aly over a alapieti:cd Circular Coine

.

. - .

I / ..

I /

Fig. I. F over a magnetized circular cone, which

is shown by the shaded circle, at a height of 0.2 in

units of the bottom radius. The numerals indicate the

field intensity when the intensity of magnetization

and the bottom radius are taken as unity. It is assumed

that the direction of magnetization lies in the magnetic

meridian plane and that its inclination agrees with the

geomagnetic dip which is taken as 480. The slope angle

is assumed as 100
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Qlagictic Anomaly ovcr a Magtetizcd Circular Cone

F

E

D

C

B 
j.

F

E
D
C

Fig. II. AF profiles along the north-south line passing

through the centre of a cone of which the slope angle is

100. The direction of magnetization and its relation to

the geomagnetic field have been given in the caption of
Fig. I. The intensity of magnetization and the bottom

radius are both taken as unity. The flight heights are

taken as 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0.
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Magn,:fl ic Anlo ,aly orcr Pa .la gqcdizcd Circi ar Cone
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Fig. . LF over two cones closely placed. The line

I I "[ .- -- r---Y:-- -- --.--' 
•  

": I t

those for Fig. 1.------ -

~ 90-- ....-

/- o,-; - _ \~
/ \

\

I_ : r- -- --- 6-

Fig. III. aF over two cones closely placed. The lineconnecting the centres runs in a north-south direction.The parameters of the cones and the relation between themagnetization and the geomagnetic field are the same as
those for Fig. I.
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M, yt: ie A non:al y ouccr na M'gc Hi :cd Circ, Or Cone

C

F - --- ___ _ --

E

C ---____ __-

Fig. IV. F profiles for the cones as shown in Fig. III
The flight heights are 0.2, 0.3, 0.4, 0.5 and 1.0.
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Appendix II

DOS FORTR A IV 360N-FO-479 3-1 PRCIFYL2 DATE 03/03/71 TIME 01.30.50 PAGE 0001

C PRO-RAM TO DRAW PROFILES FOR MAGNETIC OATA AND ALTITUDES WHEN NEEDED

C
0001l oIMEN SION O I SYMf(5), XP(.1000), Y (.iO0)._ ZP ( )100).................

-L02 epro NAuF)
0003 DATA ISYM / 0, 12, 5, 2, 4 / Rprd ed Fom.
0004 C[ = 2.57 e copy.

C INiTIALIZE PLOT TAPE
........ 

...... -----

0005 CALl PLOTST
C

C EA FIST CARn OF SERIES - MIN X,Y, MAX X,Y, N R PROFILES, HEADING ........................

C AND RA NGE (IF ALTITUDE IF NALP IS SET
C XMIN ANO YMIN = STARTING POINT AND XMAX YMAX = END POINT XMIN MAY BE

C ACT:UIALILY MIUMOERPIC ALLY L ARER THAN XMAX.
C CURir:E.NT LIMII IS FIVE PRIF !LES PFR PLOT. THERE IS I FILF PER PROFILE
C CH7n. : o:' Ct nl S FR )IFFER,'ENT FLIGHT ALTITUDES IF DESIRED/

0006 5 R0A) ( I 1 000, END = 300 ) IA, xxMIN, YMIN, XMAX, YMAX,

I AMIN, AMAX, NPR, NALT
0007 1000r) FO-AT ( 7F10.0, 212

C IV MhF THAN F!VE (5) PROFILES ARE REQUESTED - TRUNCATE TO FIVE AND

C SET CCI)E TO TERM 1NATE JO AFTER THOSE FI.VE
C

C008 !rERt = 0

3009 IF ( N"R .LE. 5 ) ,O TO 6

0,i N q gR = 5 0"

0011 ITFRM = 1

C CI.CU.ATE LEN ,TH (!F AXIS, DRAW & ANNOTATE

0012 A x/ = XMAX - XMIN

jO1 3 OY = YMAX - Y.'fIN

O014 XLEN = S Q'T( rX . DX + DY DY )
0015 Cll PLOT ( 1.5, 2.0, 3
0,,! 16 XL = 1.5 + ( XLEN / CIN )
0'17 C-LL PLOT ( XL, 2.0, 2 )
n001 ni 10 -I ,5..

001u FAC = ( I - 1. 1 / 4.
0'! = XMIN + FAC t OX

00O1 YN = YII + FAC * DY
00?22 X = 1.5 + FAC * ( XLEN / CIN )

)023 Y = 2.0
0024 OPLL- SYMR t.. ( X, Y, .14, 13, 0.0, -1 ) - - - - - - - - -.... ...

0'-?5 Y = 1.9
0-024 CALL Nt ;:ER ( X, Y, .14, XN, 270., 2 )

00?7 CALL SYMr L (-0.0, -0.0, -0.0, ' ', 270., +1 )

002R CALL ":IxER (-0.0, -0.0, -0.0, YN, 270., 2

0029 10 CONTINUE

C DRAW A ND LA EL MAGNETIC AXIS
r



DOS FORTRAN IV 360N-FO-47() 3-1 PROFYL2 DATE 08/03/71 TIMF 01.30.50 PAET 0002

030 _ CALL PLOT ( 1.5, 10.0, .3

0031 CALL PLOT ( 1.5, 2.0, 2

0032 YN = 52000.
0033 = .5 ....... ....................

034 XI= 1.5

0035 Y = -. 5

0036 . 15 1 - 1,4 . . --..

0037 YN = YN + 1000.

0038 Y = Y + 2.5

0039 CALl. PLOT ( X, Y, 3)

0040 CALL NUIEP. ( X, Y, .14, YN, 0.0, -1 )

0041 CALL SY'Mi L ( XI, Y, .14, 13, 90., -1 )

0042 15 CONTINULE -

C
C DPAW AND LASLF ALTITUDE AXIS

C . . ... --... - -..... .. . . . . -. . . .. ......................................... . . .

0043 IF ( NALT .EJ. 0 ) GO TO 19
0044 = AMAX - AMIN

0,145 L = DA / 500. + 1
0046 CALL PLOT ( XL, 9.5, 3 )

0047 C'LL PL'IT ( XL, 6.0, 2

00 9 YN= n. AMIN------ ----

0304 X = XL + .2

n036 0 8I I 1 , NL
0051 F = 1 -1

005? A MIN + F * 500.

0053 y 
= ( YN - AMIN ) / DA * 3.5 + 6.0

0354 CA L PLOT ( XL, Y, 3) ............................ ...

os03 CALL SV!RnOL ( XL, Y, .14, 13, 90.,-1 )

0 565 COA L M!,'ER ( X, Y, .14, YN, 0.0, -1)

C057 18 COm I>-UE .

0953 CAL.L SYMROL ( XL, 9.5, .14, 13, 90., -1 .

0059 CALL NUM8ER I X, 9.5, .14, AMAX, 0.0, -1 )

0060 -I- =--
C
C FNO FILE ON PLOT TAPE FOR THE JUST PLOTTED FLIGHT RECORD

C ..--.. 
--

0151 20 iP = IP + 1
00? IF ( IP .E-. I ) CO TO 26

0363 IF ( IP .LE. NPP. ) GO TO 25 ....... .............................

0054 XNFw = AMAX1 ( XNEW, 15.0 )

0365 X,, FW = XLFN / CIN + 5.

0365 YFw = 0.0

0067 CALL PLOT ( XK0E, YNEW, -3)

00W3 IF ( ITERM .E0. 1 . GO TO 900

0069 C0 TO 5
0070 25 CALL PLOT ( 0.0, 0.0, -3 i

C

C .F CARD FOR INDIVIDUAL PROFILE.......
C

0071 26 RFAO(1,1O01) ALT, NAME

,072 1001 Ft!R'.-AT FIO. , 2A4 ).. ....... ...

0073 i = 0
C



DOS FORTRAN IV 360N-FO-479 3-1 PROFYL2 DATE 08/03/71 TIME 01.30.50. PAGE 0003

C READ DAT' CARDS
C

0074 30 READ(i,1002) IX, IY, IZO, IZ
00?- 1002 FnRMAT ( 4110 )

0076 IF ( 170 .EO. 0 ) GO TO 35
0077 = I + I

O078 -x = IX / 100.
. .  . 

...
.

0079 Y = IY / 100.
0080 OX = X - XMIN

_ O 1 Y = Y - Y-IN

0 02 XPII) = 1.5 + ( 5RT( DX * DX + DY DY ) / CIN
0, 3 70 = 170 - 53000.

0334 YPII) = (70 / 100. ) 2.5 + 2.0...... -...

OIS5 IF ( YP(I) .GT. 10.0 ) YP(I) = 10.0
00.6 1 = 171

00 7 ZP( I) = ( Z - AMIN )_ / DA .3.5_ + 6.0
O IF f ZP(I) .GT. 10.0 ) ZP(I) = 10.0

GO TO 30
0090 35 X = -1.5 + IP * 3.
0i 

Y  0.0
Oq2 CAI.L NUMBFR ( Xt Y, .21, ALT, 0.0, -1 )

00"3 CAI.L SYMROL (-0.0, -0.0, -0.0, ' FT ', 0.0, 5 .

On'-94 CALL SYR OL (-0.0, -0.0, .21, ISYM(IP), 0.0, -1 )

00 "5 Y = 9.6
0096 X -1.0 + IP + 3.

,007 CALL SY'iOL( X, Y, .21, NAME, 0.0, 8 I
C
r. sLOT .A NETi C PROFILES

C
0093 CALL PLOT(XP(1), YP(1), 3)
0005 On 40 J = 1, I
0103 CALL SYBOGL ( XP(J), YP(J), .07, ISYM(IP) 0.0, -2)

0101 40 CO ;NTIN ITF
0102 IF ( NALT .EO. 0 i GO TO 20

C
C PLOT PRIFILE OF ALTITUDE
C

010 CALL PLOT ( , J 1
01 5 CALl SY 'BOL(XP(J), ZP(J),.07.,..I.SYM( IP), 0.0, -2 )

01 i 50 C' T I UE
0107 Ci) i n 20

C AT END.O FILE

C

010s 900 WRITE (3,3000)

0109 3000 FOR'AT ( ' ENO OF JOB 
)

Oli70 CALL PLOT ( 0.0, 0.0, 99 )

0111 CALL EXIT

0112 END



C
C PROGi TO DiTi MA;GNETIC DATA READY 'HR STAMPEDE PROGRAM. X AND Y

C VALUES GIVEN ONLY AT FIRST AND LAST POINT - VALUES IN BETWIEEN NEED TO

C BE CALCULATED. AVE-AGES FUR EACH ALTITUDE AND OVERALL AVERAGES AND

C ANOMALIES ARE CALCULATED

0001 I ENS ON FL( 50), IMF(50)
0302 DI:MENSION " X(100), Y(1O0), IZO(M OO), IZl(100, IZ2(100)

0003 REALTS NAME, NAMEC BLANK, DATE, NAMEX

C
.0,4 DATA BLANK, NAMEX /' ', 'EXTRA ' /

0005 EOF = O.

DOd) l=0.
C 7 00 5 J = 1,50

0 FLD(J) = 0.0
0 . I Fi(J) = 0
010 5 CJT INUEi-

C . . ..-- 
- - - -------

C READ LIMITS UF DATA TO ACCEPT IF THERE ARE ANY - JUST FIELD DATA

C A ?LAt'K CARDi WILL MEAN ALL FIELD VALUES WILL BE INCLUDED
C

SR AU ( 1, 11 ) MINF, MAXF

0 12 11 FL'MAT ( 215 )

0 13 1K = XAXF - MINFFE
0014 IF I MAXE .1Q. 0 ) MAxF = 99999

o s15 IF IJrK .NE. 0 ) wvRITE ( 3,33) MINF, MAXF

0o 33 FO:RMAT ( ' FIELD VALUES LESS THAN ', 16, ' AND GREATER THAN ',

1 16, ' WILL NOT BE INCLUDED IN THE AVERAGES ')

C
C READ FIRST RECORD - SHOULD HAVE INITIAL X AND Y ...........
C 0o

00 7' -R0A"(!, 10,END=90) NAME, DIR, IFE, XI, YE, IZ, IDZ, IGE, DATE, TIME

"1S 10 FORM'.T ( A6, F5.1, 14, F6.2, F6.2, I5, 13, 14, 20X AS, A4) .......

0019 15 NAMC = NAME

0,'2) JFE = IFE
30 .1 Hoz IDZ ... . " .... . .. .. --- -- ------.. .... ... .. . ....

0027 40 I = I + I

0 i I i-I I FF .NE. 0 I JFE = IFE

0.0)1. AlI) = X!

0025 Y(I) = VI

0020 IF ( !UZ .EQ. 0 ) IDZ = HDZ

0027 1/0(1) = IZ + IDZ

0028 I1 (I) = IGE

C.
C TEPORAR '.TLY S:ORE FLIGHT ALTITUDE IN IZ2 SPACE- NEEDED LATER WHEN ................

C A CHANG IN FLIGHT ALTITUDE GIVES RISE TO A DIFFERENT FLIGHT NAME

C
0025 JA = JFE / 100

0030 IZ2(1) = JA
0031 IF I I10)(I) .GT. MAXF ) GO TO 50

003? [F I( IZO(II .LT. MINF I GO TO 50

C SUO FIELD FOR AVERAGING



0033 FLI) JA) = FLD(JA) + IZ0(1)
0034 IMF(JA) = IMF(JA) + 1

C
C READ LATER RECORDS

0035 50 READ(1,10,END=0) NA;ME, DIR, IFE, XI, YI, IZ, IDL, I4 E, DATE; TIME

J'o3,6 IF i NIAME .EQ. BLANK ) GO TO 40

0037 IF ( NAME .EQ. NAMEC ) GO TO 40

003.s 60 sP = I - I
0039 Ox = X(1) - X(1)

0040 DY = Y(I) - Y(1)

C
C STORE OATA ON TAPE - FIRST ITEM IS THE NUMBER OF POINTS FOR FLIGHT

C
0041 WRITE (8) I

004? 00 65 J = 1,1

0043 FAC = (J - 1) / SP

0054 X(J) = X(1) + FAC * DX

0,345 Y(j) = Y(1) + AC * OY

0146 :1 = X(J) ) 100.

0047 K2 
= 

Y(J) " 100.
C

C STORE DATA - THE ACTUAL FLIGHT DATA

C
)4'8 .RITE (3) Ki, K2, 1ZO(J), IZI(J), IZ2(J), NAMEC, J

004 C 65 CONTINUE
0O00 IF ( EOF .EQ. 1. ) GO TO 99

0051 I = 0

0052 GO TO 15

0053 90 EOF = 1.
0054 GO TO 60

0055 99 ENfFILE 6
0005 REWINL 8

C
C COMPUTE AVERAGES F LIST THEM

0057 GFLD = 0.0
0058 INBR = 0

0009 - -. WRITE (3,3001)

0050 3001 FuiRAT('I',/// 10X,'FLIGHT ALT AVG FIELL N3R POINTS', // )

Got 00 105 J1 = 1,50
S0052 IF ( IYFEJ) .0W. 0 ) GO TO 105

0063 GOFL) = GFI.3 + FLO(J)

0064 INAR = IN R + IMF(J)

0055 . ... FLD(J) = FLD(J) / INF(J)

O066 ALT = J 9 100.

0067 RITE (3,3002) AI.T, FLD(J), IMF(J)

0, 3 3002 FGkMAT( '0', 12X, F6.0, 6X, F7.0, 7X,- 14

0069 105 CONT I.H E

0,070 GFLD = GFLD / IN3R

0071 WR '4ITS 13,3022) GFLD, INBR

0072 3022 FORMAT ( 'O' //, 12X, ' ALL ', 6X, F7.0, 6X 15 )

C



DOS FORTRAN IV 360N-FO-47 9 3-1 KATA2 TE 07//7 T 14.11.3 PAGE 0003
C REREAD OATA AND CALCULATE AN :"IALIES ....C FIELD IZo = ACTUAL FIELD VALUES
C FIELD IZI = ACTUAL GRUND ELEVATICNSFIELO IZ2 = ACTUAL FIELD VALUE - AVEAGE FOR THAT FLIGHT ALTITUDE -------C FtlLO 1Z3 = ACTUAL FIELD VALUE OVERALL AVERAGE

010 03 7 READ ( N8, )=900) N3RU0074 
ICNT = 00075 
DO 150 I = 1,NR71 READ (8) K , K2, IO(I), JA, NAME , ---

0077 IF I NE. 1 ) GO T 1107
007. 

KA JA
00 79 

IXTRA = O0OHO 
NAE C = W m-00l91 
WITE (3,3003) NAMEC0 0 2 . . . . . . . . . . . 0 0 3 F O R M A T ( ' 1 , F L I G H T- ' , A , / / ,/ , X. .o. 1 0- -------

I 2 o, 
Z2 Z3 ID033- . 110 IF K, .3. JA )GO TO 125 ---------------------0084 &A JA

0 4 
A IT = XT~0 0 .3 7 . - : 0.. . . . . . .. . .G. C. , 7 N^ EC A EXo0089 AR IE 3, 3003) NAMEC00 9 125 ICNT ICNT + 1 

-.. 
...00910 1z2( = IZo(I) - FL(JA)O 

= 1 -I FL JDTE 3,3004) K!, K2, HO(I), IZt(I6l IZ2(I) IZ3, NAME, ICNT.
03 2 004 FL-. 4( I X, 16 ), 6X, A6, 13
J;4 ' I IX Q 0 GO TO 140000 OIT (,2002) 1I, K, IZO(I), I( l) IZ2Ffl I 3, NAME, ICNT 

---
0097 Gn ro 1-o
009'6 2 l 140 WRITE (,,2022) Ki, K2, IZOII), IZIi f-IZ2(Iv IZ3i NAME, ICNT -

jc0 2022 FORM;AT 6110, iOx, A6, IX, 13 )
-C,150 CurU T ULt0102 GO TO 107 .................0102 900 CALL EXIT

003 END

.......-------. 
. .....-----------------------------------------------..........

................................................................-


